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Introduction

Motivation

Current Hard Problems in INFOSEC Research. DHS Report, Nov/2009,
Issue 7 of 11: Combatting Malware and Botnets, p.43.

“A/V and IDS/IPS approaches are becoming less e↵ective because

malware is becoming increasingly sophisticated (...) ”

Proposal

An approach to capture and model malware behavior by
tracking instructions writing into registers/memory.

A two-step procedure to cluster malware (based on their
traces similarity) and to identify code reuse.
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Data Value Traces

Behavioral Extraction

PoC Tracer: PyDBG

If dbg.context.Eip > 0x70000000 and ret addr < 0x70000000

then dbg.bp set(ret addr) [Win XP DLL range]

Single-stepping, software breakpoints and basic “hiding”.

Subset of Instructions

Logged: add, adc, sub, sbb, mul, imul, div, idiv,

neg, xadd, aaa, cmpxchg, aad, aam, aas, daa, das,

not, xor, and, or. (logic and arithmetic operations)

Removed: inc, dec; write value == “0”. (simple counter,
little aggregated information)
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Data Value Traces

Data Processing
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Comparing Traces

Two-step Algorithm

INPUT: Two data value traces (malware samples).
1 Quick Comparison (faster, decisory)
2 Full Similarity (computes the overlap)

OUTPUT: Similarity measure ranging from 0 (completely
di↵erent) to 1 (identical)
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Comparing Traces

Step 1: Quick Comparison

Each trace receives the 100 least-frequent bigrams as an
identifier (experimentally determined).
It discards the most common bigrams and focus on the
specifics of a certain family fingerprint.

Moving forward...
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Comparing Traces

Step 2: Full Similarity Computation

Longest Common Subsequence (LCS) of malware traces T
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eDi↵

Approximates LCS computation. Marks di↵ering regions between
traces. Maps the shared subsequences to the original instructions.
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Comparing Traces

eDi↵
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Applications

Clustering

INPUT: a set of N malware traces to be clusteres.

OUTPUT: groups of malware samples that are similar.

The clustering process is implemented in two steps:

1 Pre-clustering: quickly generates an initial clustering whereas
avoiding N

2

2

comparisons. It defines cluster leaders (longest
traces) and groups samples that exhibit over 70% of similarity.

2 Inter-cluster merging: merges clusters whose traces are
quite similar but whose least-frequent bigrams are too
di↵erent to pass the 70% threshold.
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Applications

Pre-clustering [I]
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Applications

Pre-clustering [II]
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Applications

Pre-clustering [III]
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Applications

Inter-cluster merging
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Applications

Code Reuse Identification

Identical values in two traces =) similar code?

Bigrams: eDi↵; Instructions: RegExp!

Blocks of shared code
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Experiments

Environment/Data:

Windows XP SP3 emulated over QEMU-KVM.

16,248 malware samples (execution traces).

Clustering evaluation

Complicated task (lack of o�cial ground truth); metrics required!

Precision: Clusters contain only samples from the same
family?

Recall: Samples from the same family are clustered together?

Quality: Q = P ⇥ R
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Experiments

Ground Truth

Static Filter

Clusters from information obtained by malware static analysis.
G. Jacob et al. A Static, Packer-Agnostic Filter to Detect Similar Malware Samples. 1 hour ago...

Behavioral Clustering

Clusters based on behavior extracted from dynamic execution.
U. Bayer et al. Scalable, Behavior-Based Malware Clustering. NDSS 2009.

AV Labels

Level of Agreement: AV vendors “normalized” assigned labels.
MALWARE MD5 AVG,AVIRA,F-PROT

072cb45db4b7e34142183bc70bf8b489 agent r,agent,busky

050a0b8b78cad111352b372417e467fe agent r,agent,busky

063d85386df0edb28b3f0182b83a4fe3 agent r,runner,busky
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Experiments

Results - Reduced dataset (1000 samples)
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Precision Behavioral
Recall Behavioral

Quality, amount of clusters (#), similarity Thresholds.
T 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

# 551 583 586 586 588 591 602 612 639 734 1000

Q

S

.579 .701 .700 .700 .700 .701 .708 .710 .717 .673 .548

Q

B

.485 .554 .552 .552 .554 .555 .554 .554 .537 .476 .336

AV label’s Level of Agreement (T = 70%): .894
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Experiments

Results - Full dataset (16,248 samples)

Static Filters: 7,900 clusters
Behavioral Clustering: 3,410 clusters
Our approach 7,793 clusters

Comparison - Reference clustering sets

Ref. Clustering Precision Recall Quality
Static 0.758 0.810 0.614

Behavioral 0.846 0.572 0.485
AV labeling - - 0.871

More specialized =) better recall (split samples according
to the structural information, packer etc.)

More generalized =) better precision (general behavior of a
family after unpacking tends to be similar)

AV total agreement: 8%; AV “clean”: 13.93%.
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Final Remarks

Limitations and Future Work

Classification algorithms can be subverted once you know the
rules, leading to bad clustering.

Debuggers are usually detectable (test with other approaches).

Internal components (dynamic analyzer) can be subverted.

This is PoC.

BUT...

Malware analysis are subject to split personalities, bogus
instructions, detection and evasion, stalling, crashing due to
interaction with some component etc.

SO...

New ideas and techniques are useful to defense purposes.

Tracking Memory Writes for Malware Classification and Code Reuse Identification DIMVA 2012



Part I Part II Part III Part IV Part V

Final Remarks

Thanks

UCSB SecLab, Unicamp Institute of Computing, CTI Information
Systems Security Division. Contact: argregio@cti.gov.br.
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